
A Systemic Framework for Open Software Agents

Eric Sanchis

Laboratoire de Gestion et Cognition
IUT Ponsan - Université Paul Sabatier

115 route de Narbonne, 31077 Toulouse, France
sanchis@iut-rodez.fr

Abstract. The systemic theory associates open systems and complexity closely.
This article presents a particular articulation between these two concepts using
the Systemion Model. Two types of opening are defined, characterized and
illustrated using examples.

1 Introduction

Computer systems are more and more complex both at the level of their composition
and of their behaviour. The complexity of these systems has become so extensive that
the most experienced system administrators feel more and more difficulty in ensuring
their good functioning. But how can a complex system be identified? According to
our point of view, a complex system is composed of heterogeneous elements with not
clearly defined components and fuzzy interactions, whose total functioning cannot be
deducted from the functioning of its elements.

It is important to note that the computer systems do not constitute the only field
where complexity poses a major intellectual challenge: complexity is also present in
biological, physical and socio-economic systems. For half a century this inevitable
complexity has given rise to numerous studies and researches which has led to two
very different approaches: (1) equational approach and (2) structural approach.

The equational approach is articulated around an extreme simplification of the ba-

sic elements of the system, allowing the use of powerful mathematical formalisms the
treatment of which has led to an interpretation of the total behaviour of the system
[16], [1].

The structural approach refutes the reduction of the elements of the system in sim-

ple indiscernible items and postulates that it is possible to decompose the system into
elements and interactions without denaturing their intrinsic complexity. Contrary to
the equational approach, the structural approach does not suppress the internal
architecture of the elements of the system. Multiagent systems, autonomic computing
[10] and the various theories resulting from the systemic thought such as the hierar-
chical complex systems [15], the systemography [12] or systemions [14] belong to the
structural approach. Besides, the structural method insists on the architectural charac-

mailto:sanchis@iut-rodez.fr

teristics of the elements which compose the complex system. According to the rela-
tions which it maintains with its environment, the system will be called open system
or closed system. We shall present two aspects completely different from the opening
of a system: the informational opening and the physical opening. It is this last type of
opening which we shall illustrate in a more precise way by applying it to the concept
of agent. We shall use it to introduce its internal architecture (two-layer architecture)
and identify the properties which introduce complexity within the agent (qualities).
Linking the physical opening to an architecture with two levels (one layer ensuring
the stability of the entity, the other taking care of its internal transformations) seems
to be an interesting way of research in the implementation of self-management within
complex computer systems.

This paper is structured as follows. Section 2 presents two definitions of the notion of
open system, illustrating two different points of view on this concept. The first defini-
tion was proposed by Carl Hewitt in order to have a formal model of calculation
adapted to the study of distributed systems. The second definition arises from General
System Theory and gives itself a vaster field of applications - natural or artificial
physical systems to the most complex social organizations. The interest of these two
definitions is that each one of them introduces an aspect which is different from the
concept of opening. The first is mainly based on the concept of informational open-
ing; the second integrates the exchanges of materials between the system and its envi-
ronment, i.e. what we will name the physical opening. The section will end with a
very general description of a software agent model whose architecture allows the
implementation of the physical opening. This model of agent results from one of the
components of General System Theory: the systemic approach. The following two
sections will introduce the supplementary abstract tools necessary for a precise pres-
entation of an open agent model called the Systemion Model. Finally, the last section
will illustrate the realization of the physical opening in this model by using two ex-
amples.

2 From Open Systems to Open Agents

The expression open system was used in various disciplines, in old ones (physics,
biology) as well as new ones (sciences of the systems, data processing). Each one of
them has provided this concept of characteristics, for some of them, very general and
largely applicable to many contexts, for others very specific to a particular field.
Three uses of this expression can be mentioned (1) it is sometimes used to character-
ize an elementary entity taking part in the more general activity of an organization,
(2) in certain contexts, the expression even applies to the organization itself and not
to its components, (3) in other fields, the expression is applied at the same time to the
component and to the whole. The object of our work relates more to the architecture
and the functionalities of the unit of execution than the characteristics of the organiza-
tion to which it belongs. Consequently, after having specified what the concept of
open system means, our matter will concentrate on the open agent concept.

2.1 Open Systems

Carl Hewitt defines and characterizes the open systems in the following way: "Open
systems deal with large quantities of diverse information and exploit massive concur-
rency. They can be characterized by the following fundamental characteristics:

(1) Concurrency. Open systems are composed of numerous components such as
workstations, databases, and networks. To handle the simultaneous influx of informa-
tion from many outside sources, theses components must process information concur-
rently

(2) Asynchrony. There are two sources of asynchrony in open systems. First since
the behavior of the environment is not necessarily predictable by the system itself,
new information may enter the system at any time, requiring it to operate asynchro-
nously with the outside world. Second, the components are physically separated dis-
tances prohibiting them from acting synchronously. Any attempt to clock all the com-
ponents synchronously would result in an enormous performance degradation be-
cause the clocks would have to be slowed down by orders of magnitude in order to
maintain synchronization

(3) Decentralized control. In an open system, a centralized decision maker would
become a serious bottleneck. Furthermore, because of communications asynchrony
and unreliability, a controlling agent could never have complete, up-to-date informa-
tion on the state of the system. Therefore control must be distributed throughout the
system so that local decisions can be made close to where they are needed

(4) Inconsistent Information. Information from outside the system or even from
different parts of the same system may turn out to be inconsistent. Therefore decisions
must be made by the components of an open system by considering whatever evidence
is currently available

(5) Arm's-length relationships. The components of an open system are at en
arm's- length relationship: the internal operation, organization, and state of one
computational agent may be unknown and unavailable to another agent for reasons
of privacy or outage of communications. Information should be passed by explicit
communication between agents to conserve energy and maintain security. This en-
sures that each component can be kept simple since it only needs to keep track of its
own state and its interfaces to other agents

(6) Continuous operation. Open systems must be reliable. They must be designed
so that failures of individual components can be accommodated by operating compo-
nents while the failed components are repaired or replaced"[6].

A key concept of this definition is the information notion considered as input and
output streams. This informational opening is an essential characteristic of Hewitt's
open system definition. This point of view is in accordance with computers since
their origin, i.e. systems of data processing. The internal architecture of these systems
is not at all affected by this activity of production and consumption of data.

In completely different fields - physics and biology -, the scientist Ludwig von Berta-
lanffy developed in the 40s an open system theory [2]. Integrated into a General Sys-
tem Theory [3] an open system is characterized by a continual exchange of materials
and energy, at the same time between the interior and the outside of the system, but

also between its internal components. This dynamics allows a living organism to
grow, develop, reproduce and to survive in spite of external changing conditions,
while causing regeneration, renewal, destruction and replacement of the entities
which compose it. The exchange of constituents which cannot be reduced to informa-
tion provides the entity with a type of opening of a completely different nature. Ap-
plied to the software agent field, this opening of physical nature offers more impor-
tant flexibility than the informational opening but leads to a structural modification of
the agent. This transformation must imperatively be controlled by equipping the agent
with adapted internal mechanisms, under penalty of causing its stop.

The following section introduces a model of software agent which suits the study
of the concept of physical opening.

2.2 Systemic agent

Thanks to its broad applicability, the systemic approach [12], [4] provides - in the
software agent context - the abstract tools allowing the consideration of the two types
of openings considered previously: the informational opening and the physical open-
ing. A systemic agent is a software agent (1) surrounded by an environment: that
means that the agent is located in a universe where there are action and reciprocal
reaction, (2) provided with a software architecture which changes in time, (3) in order
to carry out a certain activity.

This last point - the activity of the agent - must be clarified. Indeed, when it is con-
sidered within its most general framework, the activity of the agent has a double as-
pect: the functioning related to the task which was assigned to it and the functioning
bound to the preservation of its physical integrity. Then, the agent has a double final-
ity: an external finality materialized in the form of a task to be carried out or of a
service to be supplied and an internal finality which object is to maintain the internal
integrity of the agent. The designer of systemic agent is then confronted with the
following problem: how to manage conflicts that may occur between the two finali-
ties. In other words, the decoupling of the two finalities poses a problem of arbitration
which must be resolved at the level of the internal architecture of the agent. The se-
lected solution is to provide the agent with a two-layered architecture, a level associ-
ated with the external finality and a level associated with the internal finality. In addi-
tion, when the expression of the two finalities leads to a conflict, it is the internal
finality which is privileged.

 The principle of a dual architecture posed, we must now specify its content that is
to define the nature of the elements which make it up: the properties of the agent.

3 Attributes and Qualities

Many definitions and characterizations of the concept of agent were published in the
specialized literature [8], [13]. Certain studies articulate their analyses around two
principal axes: properties possessed by the agent and the application area considered

[9]. Our previous works led us to keep only one of the two axes: properties. Two
classes of properties are then distinguished: attributes and qualities [14].

3.1 Attributes

An attribute materializes a property of an agent which can be reduced to a mecha-
nism, a perfectly known or customisable software device. For instance, the mobility
attribute can be provided with a single parameter: the next site to be reached. Two
pieces of information can customize the replication attribute: the rate of replication
and the site of replication. The determination of the number and the meaning of the
parameters of an attribute is made during the conception of the attribute independ-
ently from the agent which will contain it. The decoupling between the realization of
the attribute and the various considered parameter settings led us to associate a
mechanism and one or several use policies to every attribute.

Two main attributes will be used within the open agent’s framework: mobility and
transformation. The mobility attribute is present in many mobile agent based applica-
tions [11], and will be used in section 5.2 to illustrate an aspect of the physical open-
ing. The second attribute is specific to the model of agents which we develop: the
Systemion Model. This model will be presented in the following section. Two addi-
tional attributes will be evoked but not explained in detail: replication and percep-
tion.

Mobility: mobility allows an agent to migrate to other sites. The notion of itinerary is
often associated to mobility. An itinerary corresponds to an ordered list of hosts hav-
ing to be visited by the agent, possibly specifying the actions to be carried out in the
case of an unreachable or hostile host. An itinerary is characterized by a site of depar-
ture, a succession of intermediate sites and a site of arrival; in many mobile agent
applications the site of arrival is the same as the site of departure; it is then called
circular itinerary. Sometimes, the notion of route is not adapted because it is prefer-
able in certain cases, to calculate at the last moment the next site to be visited (to
reach for example the least loaded host).

Modification: the modification attribute can be interpreted in various manners. We
will distinguish two variations from this attribute: evolution and metamorphosis.
Evolution can be seen as a succession of gradual transformations, relatively slow and
going in the same direction. This type of transformation is very studied in several
fields of research such as adaptive systems and artificial life. In our work, we are
interested more particularly in the abrupt transformation of a software agent. This
type of transformation, that we call metamorphosis, is defined as a change of nature
or structure of the agent, more or less radical. Contrary to evolution, metamorphosis
is a fast and sudden change.

3.2 Qualities

Unlike the notion of attribute, a quality cannot be given a precise definition accepted
by all the researchers. Autonomy and intelligence are two paradigmatic examples of
what we understand by qualities. Qualities are difficult to measure as they are mani-
fold. Consequently, there are various complementary models for a quality: for in-
stance, there are several models of autonomy. Indeed, there is a great variety of points
of view among the researchers who are interested in this property: autonomy can be
considered either as a global property or as a partial property of the agent, as a social
or not social characteristic of the agent [5], [7]. Qualities introduce complexity within
the agent.

 To illustrate one of the aspects of the physical opening of an agent, we will use a
model of autonomy which considers it as a partial and not social property of the agent
in section 5. This model derives from the definition: autonomy is the condition of a
person or a group that chooses its own laws. In our context, policies or behaviours
take the place of laws.

The next section synthesizes the various concepts presented previously, within a
particular architecture of agent.

4 The Systemion Model

The systemion model (contraction of systemic daemon) is a particular model of sys-
temic agent [cf section 2.2]. A systemion [14] is a software agent which integrates in
its architecture, the concepts of internal finality and external finality, qualities, attrib-
utes and task. This architecture can be split up into two subsystems:
(1) a functional subsystem which materializes the external finality, i.e. properties
(qualities and attributes) related to the fulfilment of the task possibly assigned to the
agent. This task can change during the systemion life-cycle and constitutes the most
flexible part of the systemion. Application complexity (including cooperation, coor-
dination and communication interactions) is embedded into the task abstraction. To
be able to integrate the first task in its functional subsystem or to change current func-
tion, a systemion must incorporate into its behavioural subsystem, the metamorphosis
attribute
(2) a behavioural subsystem: it contains the properties (qualities and attributes) spe-
cific to the agent, that is the properties which are independent from the task which it
will have to execute. This software layer implements the internal finality (Figure 1).

Internal
 finality

Attributes
Qualities

External
 finality

Behavioural
subsystem

Functional
subsystm Task

Figure 1. Systemion Architecture

4.1 Tasks

The functional subsystem establishes the current competence of the systemion in the
form of a task. It is convenient to consider a task as being constituted of one or sev-
eral components, each one providing a distinct service or all the components fulfilling
a single function. Using the modification attribute included in the behavioural subsys-
tem, the functional subsystem of a systemion can be modified by executing prede-
fined operations on one or several components which it contains. Four operations on
a component are defined: (1) adding: the component is inserted into the functional
part of the systemion and activated; we shall say that the component is active (2)
removing: it is the reverse operation of the previous one; the component is removed
by the functional subsystem (3) freezing: the component remains present in the func-
tional part of systemion but is not executed until a new reactivation takes place; the
component is frozen (4) Activation: the component is reactivated (Figure 2).

Absent

ActiveFrozen

Delete
Delete

Resume

Stop

Add

Figure 2. Task modification

 Being able to dynamically add a component to a systemion contributes to extend the
rendered services (extensibility). Dynamically replacing a component by another
allows to adapt it to the particular characteristics of a given host or to modify the
service to be provided. Finally, temporary freezing of a component allows a mobile
agent not to execute a component on one or several visited sites, without deeply
modifying the systemion structure. Indeed, addition and removing of components can
be expensive operations in CPU time and bandwidth.

4.2 Using the Systemion Model

Using the Systemion Model, we will analyze two classes of very different agents:
system daemons and worms. This analysis will enable us to illustrate the concept of
physical opening in the following section.

Daemons are present in all modern computer systems. They carry out background
service functions such as the management of network connections and printing re-
quests. For that, they continuously await the requests coming from the client proc-
esses, then carry out the requested service. From a systemion point of view, daemons
possess only a functional subsystem because the properties they implement are only
dedicated to the execution of the task which was assigned to them: daemons are uni-
task agents. Deprived of internal finality, the behavioural subsystem of a daemon is
empty (Figure 3.a).

Without simplifying excessively, we shall say that the purpose of a worm is to rep-
licate itself locally or remotely using a communication network. According to the
systemion architecture a worm is constituted by a behavioural subsystem which inte-
grates two attributes: a mechanism of perception (local perception and perception of
remote hosts) and a mechanism of replication (local replication and remote replica-
tion), attributes which confer a certain mobility to it. Not executing any particular
task, a worm doesn't integrate a functional subsystem, which is empty and fixed.
Indeed, its functional subsystem will not undergo any operational modification during
its lifespan (Figure 3.b).

T 1 T 1

Task
Replication
Perception

 Figure 3. (a) Daemon (b) Worm

5 Physical opening

5.1 Open functional subsystem

The agents first studied were all functionally determined (empty or unitask). The
systemion model supplies the tools necessary to the design and the implementation of
agents functionally not determined. An agent of this type is provided with a func-
tional subsystem which can vary in time, following the various tasks which it has to
carry out. So that this dynamic modification of function can take place, the agent
incorporates into its behavioural subsystem a suitable mechanism: the modification
attribute presented in section 3.1. Not to jeopardize the systemion’s existence the
change of current task is triggered by the behavioural subsystem but the modifica-

tions are carried out in the functional subsystem. Thus it constitutes the most flexible
part of the systemion.

Incorporating this internal transformation mechanism, the systemion can evolved
in different ways. Let us illustrate this with an example. Figure 4 describes the fol-
lowing scenario: at time t a mobile agent arrives on host A. This systemion is an
empty functionally not determined agent. It means that its functional subsystem does
not contain any task to execute when host A receives it. At time t+1 the agent in-
cludes in its functional subsystem task T1 lying in a task repository. During its execu-
tion task T1 “asks” the systemion to migrate to site B. After the migration the syste-
mion continues the execution of T1 on B, then deletes T1 from its functional subsys-
tem and adds task T2 to it. These different operations are carried out using the ones
presented in section 4.1. The systemion model enables to build pluritask agents.

Host A

T1

Repository

T1

T2

Repository

T1 T2

Host B

Figure 4. Agent functionally not determined

A pluritask agent can be used in various situations: (1) an empty mobile systemion

is used to discover a network or to test its environment, (2) a task code used at a
given moment, may be no longer accurate in a while since the main characteristics of
the local environment may change, so the agent deletes this unusable task code.

5.2 Open behavioural subsystem

The physical opening can be applied to the behavioural subsystem of the agent. As
we have already explained about the functional subsystem, the aim of the physical
opening is adding or removing behaviours having an external origin. The fundamen-
tal difference from task changing is that the modification(s) concern the part of the
agent that ensures its reliability, i.e. the subsystem maintaining the stability of the
agent. The physical opening of the behavioural subsystem introduces a risk for the
agent’s life.

We shall now illustrate how this opening can be done using the concepts presented
above. The behavioural subsystem includes the attributes and qualities which define
the essence and personality of the agent which are independent from the tasks that
may be given to it. The concept of attribute differentiates the mechanism from the
modalities of its use; each modality is called use policy or more simply policy. A

particular model of autonomy is the autonomy with regard to an attribute. This model
can be described as follows: : an agent is autonomous with regard to an attribute if it
can rationally choose or randomly elect one policy among several ones associated to
this attribute and can change current policy during its life.

In other words, an agent is autonomous with regard to an attribute if the policy it
executes is not always explicitly forced on it by the environment. This kind of auton-
omy requires a set of behaviours and a decision module used by the agent to select
the current policy (Figure 5). We do not intend to present the structure of the choice
module in details. That is why it is represented by a black box. When a new external
behaviour must be incorporated into the agent, it automatically results in modification
within the choice module. It means that the choice module also has to be modified,
even totally replaced (by using the physical opening).

Decision
M odule

B1

B 3

B2

Internal inputs

Behaviours

New
Policy

Figure 5. An incoming new behaviour

If we take mobility as an example of attribute, different migration policies are possi-
ble: (1) random navigation, (2) navigation directed according to a special criterion
(e.g. a machine load). A mobile agent will include in its behavioural subsystem a
choice module adapted to the handling of these two policies. If a new behaviour has
to be taken into account by the agent, e.g. circular navigation, the choice module will
also have to be modified. It can have various more or less serious consequences since
policies have different complexities. Indeed, a behaviour can be made of one action:
directed navigation and random navigation are mono-action policies. On the contrary,
circular navigation is made of several elementary moves.

The physical opening of the behavioural subsystem is trickier than the physical open-
ing of the functional subsystem. Anyway, the systemion model makes it possible to
study both of them.

6 Conclusion

Complex systems and open systems have common characteristics that theories result-
ing from the systemic thought try to specify. By applying to the software agent the
concepts of physical and informational opening and of two-layered architecture with

stable/unstable contents, the Systemion Model has illustrated the interest of the dual
reasoning in the study of complex computer systems.

References

1. Auyang, S. Y.: Foundations of Complex-System Theories in Economics, Evolutionary Biol-
ogy, And Statistical Physics. Cambridge (UK), (1998).

2. Bertalanffy, L. von: The Theory of Open Systems in Physics and Biology. Science, 111
(1950), pp. 23-29.

3. Bertalanffy, L. von: General System Theory. George Braziller, New York, (1968).
4. Eriksson, D. M.: A Principal Exposition of Jean-Louis Le Moigne's Systemic Theory. Cy-

bernetics and Human Knowing, Vol. 4, no 2-3, (1997).
5. Franklin, S., Graesser, A.: Is it an Agent, or just a Program?: A Taxonomy for Autonomous

Agents. In Intelligent Agents III – Proceedings of the Third International Workshop on
Agent Theories, Architectures and Languages (ATAL 96), (Edited by Müller J. P.,
Wooldridge M. and Jennings N.), Lecture Notes in Artificial Intelligence, 1193, Springer
Verlag, (1996).

6. Hewitt, C.: Offices Are Open Systems. ACM Transactions on Office Information Systems,
Vol. 4, No.3, July 1986, pp. 271-287, (1986).

7. Hexmoor, H., Castelfranchi, C., Falcone, R. (eds.): Agent Autonomy. Kluwer Academic
Publishers, Boston, (2003).

8. Jennings, N., Wooldridge, M.: Applications of Intelligent Agents. In Agent Technology:
Foundations, Applications, and Markets (Edited by N. R. Jennings and M. Wooldridge)
Springer Computer Science, (1998).

9. Jennings, N., Sycara, K., Wooldridge, M.: A Roadmap of Agent Research and Development.
In Autonomous Agents and Multi-Agent Systems, 1, pp 275-306, Kluwer Academic Pub-
lishers, Boston, (1998).

10. Kephart, J. O., Chess, D. M.: The Vision of Autonomic Computing. IEEE Computer, Vol.
36, no 1, pp 41-50, (2003).

11. Milojicic, D.: Trend Wars – Mobile agent applications. IEEE Concurrency, Sept 1999, pp
80-90, (1999).

12. Le Moigne, J. L.: La théorie du système général – Théorie de la modélisation –. Ed. PUF,
Paris, (1977).

13. Parunak, H. V. D., Breuckner, S., Sauter, J.: A Preliminary Taxonomy of Multi-Agent
Interaction. In Agent-Oriented Software Engineering (AOSE) IV, P. Giorgini, Jörg Müller,
James Odell, eds., Lecture Notes on Computer Science volume (forthcoming), Springer,
Berlin, (2004).

14. Sanchis, E.: Designing new Agent Based Applications Architectures with the AGP Meth-
odology. In Proceedings of the twelfth IEEE International Workshops on Enabling Tech-
nologies: Infrastructure for Collaborative Enterprises (WETICE 2003), IEEE Computer
Society, (2003).

15. Simon, H. A.: The Sciences of the Artificial. MIT Press, Cambridge (Massachusetts),
(1996).

16. Wolfram, S.: Universality and Complexity in Cellular Automata. Physica D, 10, Jan 1984,
pp 1-35, (1984).

